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The dynamics of spinodal decomposition of a two-dimensional binary polymer liquid on a square lattice has 
been investigated by Monte Carlo simulation. Initial relaxation of the dynamic structure factor S(q,t) is non- 
exponential, which is in agreement with the Ginzburg criterion for predicting non-classical behaviour in two 
dimensions. 
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INTRODUCTION 

Phase separation in two dimensions has received much 
attention in recent years L2. Such decomposition 
phenomena have been observed in a variety of physical, 
chemical and biological systems ranging from adsorbates 
on solid surfaces 3 to mixed phospholipid bilayers 4-6. 
Less attention has been paid to demixing processes of 
polymer films, although these are of significant industrial 
importance, e.g. in a variety of coating problems. 

Theoretically two-dimensional decomposition is not 
yet fully understood. So far investigations on non- 
polymeric models only have been performed, by the 
Monte Carlo technique 7- t° and by molecular 
dynamics 11,12; these have shown that two-dimensional 
systems deviate strongly from classical mean-field theory 
of kinetics following quenching as developed by Hillert ~ 3 
and Calm and Hilliard t4'15. 

No corresponding investigations on two-dimensional 
polymer blends have been reported. Hence the purpose of 
the present work is on the one hand to demonstrate how 
segregation phenomena in dense polymer systems can 
successfully be performed by Monte Carlo methods, and 
on the other hand to compare the results with simulations 
of two-dimensional binary alloys and with theoretical 
predictions of polymer demixing processes ~6-2~. 

The theory of the dynamics of polymer blends is based 
on the e x t e n d e d  19 (allowing for slow spatial variations) 
Flory-Huggins 16'17,22 free energy 

F / k a T = ~ A l n 4 + ~ B  ) l n (1 -4 )+  X 4 ( 1 - 4 )  
a 2 

-I- (V4) 2 (I) 
364( 1 --4) 

where a is a typical size of a monomer, 4 is the fraction of 
A-polymers, NA, NB are the degrees of polymerization of 
A and B; the interaction parameter Z is often positive and 
favours segregation, and in most cases assumed to be 
small and essentially independent of temperature 17'22. 

The relaxation of 4 is described by the standard 
phenomenological continuity equation 

d4/& + div J = 0 (2) 

where J is the local current of the A species, and is linearly 
related to the gradient of the chemical potential 
difference. The local chemical potential difference is given 
by the functional derivative of F with respect to 4. 
Equation (2) can then be written in terms of the Fourier 
components 

g4(q,t)/~t = - [A(q)q2/kaT]#(q,t) + ~l(q,t) (3) 

Here an additional stochastic force has been introduced 
to ensure the correct statistical description of the system 
dynamics. A is related to the Onsager coefficient by a 
fluctuation-dissipation theorem as 

Ql(q,t )rl(q',t') ) = A(q)q2 fi(t - t') (4) 

A linearization of equation (2) around the average 
concentration 40 using 4(q,t)=4o +&b(q,t) yields 24 

8(14(q,t)12)/dt = - 2og(q)(14(q,t)12) 4- 2A(q)q 2 (5) 

where fo(q) is the amplification factor defined as 

2[- 1 1 
to(q)=A(q)q ~N--~0 4 NB(1- 40) 

a2q2 1 
2;(+ 18~o(i_ ~o) 

(6) 

Note that the amplification factor changes sign at a 
certain qc that depends on the length of the polymer chain. 
Fluctuations with wave vector q smaller than qc are 
exponentially amplified, whereas those with q larger than 
q¢ are exponentially damped. The maximum growth 
occurs at qm < q¢ with the peak remaining stationary. 
Equation (5) has the solution related to the dynamic 

0032-3861/86/111777503.00 
© 1986 Butterworth & Co. (Publishers)Ltd. POLYMER, 1 986, Vol 27, November 1777 



Spinodal decomposition of polymer films: A. Baumg~rtner and D. W. Heermann 

structure factor S(q,t) 

S(q,t)- (lck(q,t)12)r 

= S(q,0)exp(- 2tto(q)) + S(q,oo)[1 - exp( - 2to~(q))] 

(7) 

More detailed derivations and discussions of the Calm- 
Hilliard theory are given in ref. 21 

The classical mean-field result of equation (6) is known 
to be nearly valid only for binary alloys (NA = NB = 1) 
with large but finite range of interactions 2s and for 
polymer blends (NA,NB~ 1) in three dimensions 1a-21. 
This has been understood by means of the Ginzburg 
criterion 26-28, which asserts mean-field behaviour if the 
mean square amplitude of fluctuations 6W of the coarse- 
grained order parameter W is smaller than the order 
parameter itself, ([rtIJ(r)]2),~tI j2. In particular for 
polymer mixtures the Ginzburg criterion 18,2 x yields that 
the temperature width (with respect to the critical point 
To) of the non-classical region is 

AT* - T* - T¢,.~ TeN -(d-2)/(4-d) (8) 

which indicates mean-field behaviour for dimensions 
d--3 as soon as N is reasonably large, whereas non- 
classical behaviour is predicted for d = 2 for any chain 
length. This last prediction is confirmed by Monte Carlo 
simulations presented in Results and Discussion. 

MODEL AND SIMULATION TECHNIQUE 

The single chain consists of N - 1  flexible jointed 
segments (of the same length as the lattice constant) on 
a square lattice. The intermolecular energy between two 
adjacent polymer beads is e > 0 if this is a contact between 
two different polymer species A and B, and zero 
otherwise. The steric interactions are taken into account 
as usual: double occupancy of any lattice site is excluded. 

In order to simulate an infinite system of finite chains at 
a given concentration c, it is convenient to approximate 
the infinite system by infinitely many identical cells of 
linear dimension L (in units of the lattice constant) and 
imposing periodic boundary conditions between 
neighbouring cells. The concentration c is then simply 
given by the number of sites occupied by the chains per 
number of sites in one cell, which is c=NNp/L2; Np is the 
number of chains per cell. 

Technically different ensembles of chain configurations 
are generated by a modified reptation technique 29. 
Starting from an arbitrary configuration, one first selects 
at random one of the voids (i.e. unoccupied lattice sites). If 
one of the randomly selected nearest neighbour sites of 
this void is occupied by one of the two ends of one of the 
chains, the other end of the chain is moved to the void, 
thereby displacing this void to the former end point of the 
chain. The new state is accepted as usual according to the 
Metropolis sampling technique. 

Reptation technique is presently the only method 
suitable for simulations of lattice polymer systems at very 
high concentrations. It should be noted that the most 
straightforward way to introduce a more realistic 'local' 
chain dynamics would be to consider chains in the 
continuum, e.g. freely jointed chains performing local 
kink jumps a°. 

One particular system at concentration c = 0.976 has 
been simulated. The system consists of Np=1476 
chains each N = 10 sites long on a 123 x 123 square lattice. 
The fraction of A-type polymers is 50~. In order to 
follow decomposition processes, the system was 
quenched from infinite temperature to T = 1.0 below the 
critical point 2.0 < T¢ < 5.0 (temperatures are given always 
in units of kB/e, i.e. T=kBT/e). The exact location of the 
critical point T¢ is not yet known, but from a few quenches 
to different temperatures we expect for our standard 
system 2.0< T¢ < 5.0. 

The collective structure factor Sa(q,t) was computed 
from the Fourier transform of the pair-correlation 
function and spherically averaged 25 

SA (q,t)= Z'S(q,t)/Z'l (9) 

with q = (2n/L)n, where n = 1,2 . . . .  ; E' denotes that for a 
given n a spherical shell is taken as 
n -  1/2~< [qlL/2~ <~ n + 1/2. 

RESULTS AND DISCUSSION 

Athermal equilibrium properties 
To ensure that, before quenching the system, the initial 

configuration represents an equilibrated high tempera- 
ture state, the structure factor S(q) has been examined for 
various chain lengths at T = oo. According to theory (see 
e.g. ref. 17) the scattering intensity is given by the Debye 
function 

S(q)= (2N/x2)[e - x -  1 +x] (lO) 

where x = q2(Su2) and (S 2) is the mean square radius of 
gyration. If q2($2) ,~ 1 equation (10) gives the familiar 
Ornstein-Zernike form 

S(q) = S(0)/(1 + qZ¢2) (11) 

where ~2oC($2). The data presented in Fi#ure 1 are in 
agreement with equation (10) for x<2,  but deviate for 
larger values of x.There are two possible reasons for this 
discrepancy: the data clearly reflect for a large wave 
vector the artificiality of the underlying lattice structure; 
another reason for the discrepancy is probably the fact 
that in two-dimensional polymer melts the chain statistics 
become gaussian only in the limit of very long chains. 
Indeed we have ($2)/N~-0.22, 0.27, 0.31 for N=5 ,  10, 
20. A typical high temperature configuration is given in 
Fioure 2a for N =  10. 

Spinodal decomposition 
After having examined the high temperature behaviour 

of the polymer film the spinodal decomposition process is 
considered. The system was quenched from the athermal 
state to the temperature T=  1.0, which is well inside the 
miscibility gap. All quenches were performed 
instantaneously. 

Before examining the evolution of the structure factor it 
is illustrative as well as informative to consider a few 
configurations during the unmixing process. Fioure 2a 
shows the one-phase homogeneous state from which the 
instantaneous quench was performed. After the system 
had evolved toward two-phase coexistence for about 
400Oils, Fioure 2b was taken. Already A- and B-rich 
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Figure 1 
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Scaling plot of the structure factor N/S(q,O) versus q2<$2> at 
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Figure 2 Configurations at different times of a system consisting of 
1476 chains, each 10 sites long on a 123 x 123 square lattice. Only one 
type of the two polymer species is shown. The system has been quenched 
to T =  1.0. (a) Initial configuration at t ime t = 0#s ;  (b) configuration at 
t = 3750 #s; (c) configuration at t = 44 500 #s 

domains have formed. Such domains are characteristic of 
the spinodal decomposition process. Note also the 
percolative nature of the domains. This can be seen even 
more strikingly in Figure 2c, which was taken at about 
44000#s. The domains have coarsened considerably. 
Observe the compactness of the precipitate. In the later 
stages of unmixing the domains will coarsen even more 
until two-phase equilibrium is reached. In these late 
stages the growth is thought to be due to a mechanism of 
evaporization and condensation of small droplets. 

Displayed in Figure 3 is the change with time of the 
structure factor up to 3000/~s. Owing to the wide spacing 

between the wave vectors it is difficult to determine if the 
peak remains stationary, as predicted by the Cahn-  
Hilliard theory. The discreteness of the lattice hampers 
comparison with a continuous variable theory. The peak 
remains at a q vector for a certain time interval even 
though in reality it has shifted toward smaller q. The shift 
is observable only when it has reached the nearest lower q 
vector. This can only be achieved by simulating larger 
lattices L × L, so that the spacing narrows according to 
q= 2n/L. However, it would require an extraordinary 
amount  of computer time. 

More instructive is the change of the structure factor at 
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Figure 3 Structure factor S(q,t) versus wavevector q=2~n/123 at 
different times t as indicated. The system under consideration consists of  
1476 chains comprising 10 sites each on a 123 x 123 square lattice. The 
system was quenched from T = oo to T = 1.0 
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F i g u r e  4 Structure factor S(q,t) versus time for different wave vectors q 
as indicated. The system is the same as in Figure 3 

fixed q as a function of time (cf. Figure 4 where the change 
with time is shown for four different wave vectors). The 
figure clearly shows that the structure factor does not 
increase exponentially with time. Rather, it increases very 
slowly. This is in disagreement with the Cahn-Hilliard 
theory, but is in accordance with the prediction of the 
Ginzburg criterion (8). 

The changes with time bear a remarkable similarity to 
those found by Monte Carlo simulations of the two- 
dimensional nearest-neighbour Ising model 7-12. The 
model is a special case of that studied here. It corresponds 
to chains of length one. Hence, the simulations show that 
in two dimensions Cahn-Hilliard type behaviour can be 
observed only for systems with long-range interactions 2 s. 
It cannot be forced by making the chains longer, in 
contrast to the three-dimensional case 17-2~. Three- 
dimensional binary polymer liquids with short range 
interactions and long chains would show, for short times 
following a quench, an exponential growth of the 
structure factor according to equation (7). 

The slow growth of the structure factor suggests that 
the typical size of the precipitate increases very slowly. It 
would be interesting to follow the complete unmixing 
process, particularly for polymer systems since late time 
behaviour is not well understood. 

SUMMARY 

For the first time Monte Carlo simulation of spinodal 
decomposition of polymer mixtures has been performed. 
It has been demonstrated that even at very high 
concentration (in the present case c = 0.976) the dynamics 
of segregation processes can be simulated successfully. 
Although the present investigations were restricted to two 
dimensions (polymer film), the method can be applied as 
well to higher dimensions. Questions concerning single 
chain dynamics including reptational .motion have not 
been considered. The resulting time-dependent collective 
structure factor exhibits strong non-exponential 
relaxation, which is in agreement with predictions using 
the Ginzburg criterion (8), according to which classical 
exponential relaxation is supposed to appear only in 
dimensions d > 2 for polymer mixtures. 
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